Fitting time series models

CIHR Course Week 2 Michael Law

michael.law@ubc.ca

Teaching Objectives

- Describe time series modeling
- Learn about key strategies
 - Plotting
 - Time trends
 - Seasonality
 - Autocorrelation
- Discuss two examples

Steps we will cover

- 1. Setup data
- 2. Visually inspect the data
- 3. Perform preliminary analysis
- 4. Check for and address autocorrelation
- 5. Run the final model and plot the results

3

Step 1: Setup Data

Data Setup

- One data row for each time period, including:
 - Time variable for day/month/year
 - Outcome of interest at that time period
- Possible variables:
 - Time Trend
 - Post-intervention Level Change
 - Post-intervention Trend Change
 - Outcome of interest

Month	Visits
2016-01-01	557
2016-02-01	574
2016-03-01	542
2016-04-01	793
2016-05-01	605
2016-06-01	612
2016-07-01	685
2016-08-01	466
2016-09-01	554
2016-10-01	698

Step 2: Visually Inspect Data

Visually Inspect Data

What you are looking for:

- Trends
 - Linear
 - Polynomial
 - Seasonal (next week!)
- Potential interventions
- Data quality issues
 - Missing data
 - "Wild" points

Step 3: Preliminary Analysis

Where we are now

- 1. Setup data
- 2. Visually inspect the data
- 3. Preliminary analysis
- 4. Check for and address autocorrelation
- 5. Run the final model and plot the results

Preliminary analysis

- Run a standard OLS regression with a time series specification
- We will work through:
 - Intercept-only
 - Simple time trend
 - Quadratic time trend
- This will form the basis for checks about autocorrelation

Intercept-only Model

$$outcome_t = \beta_0 + \varepsilon_t$$


```
> summary(ols.model)
Call:
lm(formula = count ~ 1, data = dataset)
Residuals:
    Min 1Q Median
                              3Q
                                     Max
-186.965 -42.965 3.035 43.035 254.035
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 538.96 11.67 46.19 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 88.09 on 56 degrees of freedom
```


Intercept and Time Model

 $outcome_{t} = \beta_{0} + \varepsilon_{t}$ $outcome_{t} = \beta_{0} + \beta_{1} \cdot time + \varepsilon_{t}$


```
> summary(ols.model.time)
Call:
lm(formula = count ~ time, data = dataset)
Residuals:
    Min 1Q Median
                              30
                                     Max
-187.891 -44.451 2.355 46.201 170.320
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 636.0739 18.5113 34.361 < 2e-16 ***
time -3.3486 0.5552 -6.031 1.43e-07 ***
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 68.96 on 55 degrees of freedom
Multiple R-squared: 0.3981, Adjusted R-squared: 0.3872
F-statistic: 36.38 on 1 and 55 DF, p-value: 1.432e-07
```


Intercept and Time Model

$$outcome_{t} = \beta_{0} + \varepsilon_{t}$$

$$outcome_{t} = \beta_{0} + \beta_{1} \cdot time + \varepsilon_{t}$$

$$outcome_{t} = \beta_{0} + \beta_{1} \cdot time + \beta_{2} \cdot time^{2} + \varepsilon_{t}$$


```
> summary(ols.model.time2)
Call:
lm(formula = count ~ time + time2, data = dataset)
Residuals:
    Min 1Q Median 3Q
                                    Max
-186.458 -46.691 3.632 28.892 198.012
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 591.50239 27.51523 21.497 <2e-16 ***
     1.18411 2.18884 0.541 0.5907
time
time2 -0.07815 0.03658 -2.136 0.0372 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 66.83 on 54 degrees of freedom
Multiple R-squared: 0.445, Adjusted R-squared: 0.4244
F-statistic: 21.65 on 2 and 54 DF, p-value: 1.247e-07
```


Step 4: Autocorrelation

What is autocorrelation?

- Relationship in data points over time
 - Means the data points are not independent
- Two types we will discuss:
 - Autoregression
 - Moving Average

Methods to Check Autocorrelation

- Several methods, including:
 - Durbin-Watson test
 - Residual plots
 - ACF and partial-ACF plots

Durbin-Watson test

- A formal test that tests for correlated residuals
- Interpretation
 - Values of 2 indicate no autocorrelation
 - lower values indicate positive correlation, higher indicates negative correlation

<pre>> # Durbin-watson test, 8 time periods</pre>						
>	dwt	(ols.model.time2,max	<mark>k.lag=12,al</mark> t	ernative="two.sided")		
	lag Autocorrelation D-W Statistic p-value					
	1	-0.04948719	2.093509	0.960		
	2	-0.13944970	2.256553	0.362		
	3	0.07000156	1.825057	0.522		
	4	-0.02657831	1.855414	0.730		
	5	-0.02114350	1.822230	0.718		
	6	0.10264861	1.562874	0.252		
	7	0.13489035	1.460330	0.158		
	8	-0.32012733	2.299303	0.060		
	9	0.02045164	1.609675	0.596		
	10	-0.14917289	1.894482	0.454		
	11	-0.06803985	1.617629	0.826		
	12	0.08589470	1.146209	0.062		
	Alte	rnative hypothesis:	rho[lag] !=	0		

Residual plot

• Use a residual plot to visually inspect for independence

Autocorrelation plots

- A plotting method with which you can assess autocorrelation and moving averages
- Two plots
 - Autocorrelation
 - Partial autocorrelation

Model	ACF	Partial ACF	
No autocorrelation All zeros		All zeros	
Autoregressive (p)	Exponential Decay	p significant lags before dropping to zero	
Moving Average (q)	q significant lags before dropping to zero	Exponential Decay	
Both (p,q)	Decay after q th lag	Decay after p th lag	

Examples of Exponential Decay

Examples of Significant Lags

Time

Model	ACF	Partial ACF	
No autocorrelation All zeros		All zeros	
Autoregressive (p)	Exponential Decay	p significant lags before dropping to zero	
Moving Average (q)	q significant lags before dropping to zero	Exponential Decay	
Both (p,q)	Decay after q th lag	Decay after p th lag	

ACF

PACF

Step 5: Run the Final Model

Where we are now

- 1. Setup data
- 2. Visually inspect the data
- 3. Preliminary analysis
- 4. Check for and address autocorrelation
- 5. Run the final model and plot the results

Running the final model

- Use function *gls* (similar specification to *lm*)
- If we wanted to use AR(1), for example


```
> summary(model_final)
```

```
Generalized least squares fit by maximum likelihood
Model: count ~ time + time2
Data: dataset
AIC BIC logLik
647.5837 657.799 -318.7919
```

```
Correlation Structure: AR(1)
Formula: ~time
Parameter estimate(s):
Phi
-0.04894649
```

```
Coefficients:
```

	Value	Std.Error	t-value	p-value
(Intercept)	591.8056	26.306115	22.496884	0.0000
time	1.1618	2.092482	0.555205	0.5810
time2	-0.0778	0.034974	-2.224745	0.0303

Next week...

- 1. Seasonality
- 2. Predictions
- 3. Syndromic surveillance models

