Fitting time series models,
Part 2
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Teaching Objectives

* Quick recap of time series modeling from Part 1
 Seasonality and time trends

* Syndromic surveillance
« Motivation
* Steps
« Group activity
* Prediction intervals
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Part 1 Recap



Research questions with time series data

 Describe the behavior of an indicator over time
* Is infant mortality decreasing over time? By how much?
« What are the seasonal differences in malaria cases?

» Detect deviations from expected in an indicator
» Is a region experiencing higher than expected cases of diarrhea?
e Is the number of health facility deliveries lower than expected?

 Measure the impact of an intervention on an indicator

« After social distancing measures were put in place, how many fewer
COVID-19 cases were there?
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Model diagnostics: autocorrelation
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Seasonality and time trends



Time series patterns

« Seasonal: Outcomes are impacted by seasonal factors (season, month,
day of the week)
« Fixed with known frequency
 Easily mistaken with fluctuations (must be related to some aspect of
calendar time)

« Trend: Long-term increase or decrease in the data.

* Trends can change direction over time
« Trends do not need to be linear

Source: Forecasting: Principles and Practice (https://otexts.com/fop2/)
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Influenza in Italy
(Rosano et al., 2019)
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Crude death rate/1000

Death rates in Burkina Faso from 1993-2001
(Kynast-Wolf et al., 2005)
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Child mortality from 1974 to 2016

Child mortality (number of deaths per 1,000 live births) in South Africa 1974 to 2016
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Antidiabetic drug sales in Australia
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Activity: Malaria cases in Malawi facility
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Malaria cases in Malawi facility
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Malaria cases in Malawi facility
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Malaria cases in Malawi facility
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Model diagnostics: autocorrelation
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How to deal with seasonality and trend?

« Seasonality: Fourier series are popular ways to deal with seasonality
in time series models (other options: splines, dummy variables, etc.)

. 2mt 2mt . 4mt
T4 = sin(F5), 2o = cos(F), T3 = Sm(ﬁ)a

drt : t t
Tyt = COS(%),ZE{,,t = sm(%),mﬁ,t = cos(%),

« Trends: Add a linear term(s) to capture yearly trend
« Will only capture linear decreases or increases over time
« If changes are not linear, dummy variables or more complex transformations
(log, quadratic, etc.) can be used

Source: Forecasting: Principles and Practice (https://otexts.com/fop2/)
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Fourier series (examples)
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Malaria cases in Malawi facility
outcome, =p,+p;sin(2nt/12)+ [, cos(2mt/12)+ g,

time




Model diagnostics: autocorrelation
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Syndromic surveillance
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Research questions with time series data

 Describe the behavior of an indicator over time
* Is infant mortality decreasing over time? By how much?
« What are the seasonal differences in malaria cases?

» Detect deviations from expected in an indicator
» Is a region experiencing higher than expected cases of diarrhea?
e Is the number of health facility deliveries lower than expected?

 Measure the impact of an intervention on an indicator

« After social distancing measures were put in place, how many fewer
COVID-19 cases were there?

_“*! 0_0_? GLOBAL HEALTH
i“ﬂ % RESEARCH CORE

26



Detecting deviations from expected

Syndromic surveillance: is the process of monitoring data on
symptoms or outcomes related to a disease as a way to detect areas
that might be affected by the disease.

Pros: Cons:
- Provide “warnings” for local - Not as good as monitoring the
areas. disease directly.
- Uses existing data. - Changes could be explained by
- Process can be automated. other factors that should be
considered.
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How to conduct syndromic surveillance

 Step 1. Choose relevant indicators to follow over time (Session 1)
and format data for analysis (Session 4)

» Step 2. Determine baseline and evaluation periods
 Step 3. Fit time series model to baseline period (Sessions 2 & 3)

 Step 4. Using the model from Step 3, calculate deviations from
expected in the evaluation period (Session 3)

 Step 5. Produce interpretable visualizations (Session 5)
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Group activity: how should we calculate

deviations from expected?
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Group activity: how should we calculate
deviations from expected?

1. Are the number of malaria cases higher or lower than expected in
January 2020? By how many malaria cases?

2. In the evaluation period, are the observed numbers of malaria cases
systematically higher than expected, lower than expected, or is there no
discernable pattern?

3. Does using predicted cases - observed cases to identify deviations
make sense? How could this measure be improved?

Your group should answer these questions on a Google Form in a Breakout Room.
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Prediction intervals
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Prediction interval: the range of values where a future
individual observation (monthly count) is likely to fall.

Prediction intervals are different than confidence intervals,
because they correspond to an individual value, not the mean.
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Lab activity: Syndromic Surveillance of
Acute Respiratory Infection Cases at
Liberia facility

 Lab will be taught by Don today



Next lecture: Cleaning the Data

Extracting data

Setting up data in usable format
Identifying outliers

Dealing with missing data
Automation
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