
1

Getting and Cleaning Data
CIHR Course Week 4

Bethany Hedt-Gauthier 
Izzie Fulcher



2

Teaching Objectives
• Overview

• Outliers 

• Missing data 
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Overview
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Health management 
information systems
• Countries have always 

generated/used data.

• Nationalized systems garnered 
global attention beginning in 
mid-1990s.
• Standardize processes
• Common indicators
• Universal systems such as 

DHIS2
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Quality of data recorded?

• Is it complete?

• Is it valid?

• Is it reliable?

• Is it accurate?
9
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Completeness and validation
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Reliability
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Accuracy



14



15

High-level thoughts on HMIS quality
• There is no such thing as perfect data.

• Important to monitor quality of your data:
• Good enough to use?
• Ways to improve?

• Even imperfect data can be usable data.
• Can throw out clear mistakes.
• If bias is consistent, then can still detect outliers.
• May be able to fill in missing values.
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Outliers
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A note 
In this session, we will discuss outliers and missing data in 
the context of fitting a time series model for a single 
facility and indicator
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Types of outliers
• Outliers are data points that are very different from the 

majority of observations in the time series 

• There are various types of outliers:
• Errors in data entry
• Unusual cases 

• Global outlier: raw values are significantly larger or smaller than the rest of 
the values.

• Contextual outlier: higher or lower value than you would expect based on the 
patterns and trends of the time series
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How do we detect outliers?
• Method 1: Visual inspection

• Hard to detect outliers with time series data due to seasonality

• Method 2: Tukey’s rule (larger than 1.5*IQR values)
• Does not capture the seasonal nature
• Boxplots by month – but would not capture trend & need many 

years of data 
• Boxplots by year – but would not capture seasonality

• Method 3: Fit time series model and apply statistical test
• Captures trends, but it is model dependent
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Method 1: Visual inspection
• Error?
• Global outlier?
• Contextual outlier?

Jayproken Clinic in Liberia
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Method 1: Visual inspection

St. Francis Clinic in Liberia

• Error?
• Global outlier?
• Contextual outlier?
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Method 1: Visual inspection

Yangaya Clinic in Liberia

• Error?
• Global outlier?
• Contextual outlier?
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Method 1: Visual inspection

Boniken Clinic in Liberia

• Error?
• Global outlier?
• Contextual outlier?
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Method 2: Tukey’s rule

Boniken Clinic in Liberia
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Method 2: Tukey’s rule

median

75th percentile

25th percentile

Q75 + 1.5*IQR

Q25 – 1.5*IQR

Boniken Clinic in Liberia
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Method 2: Tukey’s rule

Boniken Clinic in Liberia
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Method 2: Tukey’s rule

Boniken Clinic in Liberia
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Method 3: Apply statistical test
• Fit time series model (Sessions 2 & 3)

• Calculate residuals (observed - predicted)

• Calculate test statistic (Grubb’s test)

• Calculate critical value

• Compare test statistic to critical value 
• If larger, then remove the largest residual and repeat steps
• If smaller, then no outliers identified

• The residuals removed are the outliers

𝑟! = 𝑦! − %𝑦!

𝑅" = max
𝑟! − �̅�
𝜎#

𝑇" =
𝑁 − 𝑖 𝑡$,&'"'(

(𝑁 − 𝑖 − 1 + 𝑡$,&'"'() )(𝑁 − 𝑖 + 1)

𝑅" > 𝑇"
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Method 3: Apply statistical test
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Method 3: Apply statistical test
Not previously 
identified

Not previously 
identified
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Solutions: Outliers
• If an outlier is suspected, it is important to investigate why

the data point may be an outlier 

• Was it an anomaly?
• If concerned about model fit, include a dummy variable for the time 

point(s) 

• Was it a data entry error?
• Can it be replaced with the correct/true value? 
• If not, then code as missing value
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Solutions: Data entry error

Jayproken Clinic in Liberia
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Solutions: Data entry error

Jayproken Clinic in Liberia
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Solutions: Data entry error

Jayproken Clinic in Liberia
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Missing data
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Considerations for missing data
To help determine if and how missing data should be addressed:

1. What is the research question?

2. Why is the data missing? 

3. Is there enough information to address missing data?
• How much data is missing?
• Is there additional information available to “fill in” missing values?
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1. What is the research question?
• Describe the behavior of an indicator over time

• May be of interest to describe missing data pattern 
• May want to “fill in” a reasonable value for missing month in figures
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1. What is the research question?
• Describe the behavior of an indicator over time

Can perform single
imputation based on: 
• Mean
• Interpolation
• Model-based
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1. What is the research question?
• Describe the behavior of an indicator over time 

• May be of interest to describe missing data pattern 
• May want to “fill in” a reasonable value for missing month in figures

• Detect deviations from expected in an indicator (syndromic surveillance)
• Want to build a valid baseline model for each facility, which can be biased if data is 

missing 
• Want to aggregate data across multiple facilities
• Need to be careful about “borrowing” information from the baseline period for 

missing values in evaluation period

• Measure the impact of an intervention on an indicator
• Want to construct valid estimates, which can be biased if data is missing



43

2. Why is the data missing?
• Missing completely at random
• Missing pattern is random (can ignore: “complete case”)

• Missing at random
• Missing pattern can be fully identified using observed data (e.g. 

other facilities or external data sources) 

• Missing not at random
• Missing pattern cannot be identified from the observed data
• Very challenging and often results in calculating reasonable 

“bounds” for predicted values
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Missing data patterns in time series data
No missing data Not MCARMCAR
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Missing data patterns in time series data
No missing data Not MCARMCAR

remove 10 random points remove the 10 largest points
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Missing data patterns in time series data
No missing data Not MCARMCAR
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3. Is there enough information?
• How much data is missing?
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3. Is there enough information?
• Is there additional information available to “fill in” missing values?

• Data from other facilities
• Can use “similar” facilities (neighboring, same size or type, or correlated seasonal 

patterns) to impute missing values 

• Other indicators
• Health service utilization indicators that are correlated with indicator could be 

used to impute missing values in a given facility
• Need to make sure they do not have similar missingness patterns

• External (non-DHIS2) sources
• Weather of rainfall data
• Mobility data

Many statistical methods to 
incorporate these data sources! 
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Solution: Syndromic Surveillance
Goal 1: Create baseline facility-level models for prediction
• Chose not to model facilities with >20% of months missing 
• This was “not enough information to draw conclusions”
• Fit facility-level models on complete case data

Goal 2: Create baseline aggregate-level models for prediction
• To calculate aggregate-level monthly predictions, sum predicted 

monthly counts across facilities by “drawing” from facility-level 
complete case models

Future direction: Utilize information from “similar” facilities and 
indicators to fill in missing values (previous slide) 
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Lab: Data formatting and cleaning 
• Nichole will lead the lab today 
• Work on cleaning and formatting data for analysis
• Examples with outliers and missing data 
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Final lecture: Data visualization for 
syndromic surveillance 


