Data visualizations

CIHR Course Week 5

Izzie Fulcher

Teaching Objectives

- Introduction
- Best practices
- Syndromic surveillance
- Recap

Introduction

Reasons for data visualizations

• Exploring the data

- Distribution of data / transparency
- Identify patterns, outliers, missing data

Analyzing the data

- Identifying deviations
- Goodness of fit
- Checking model assumption

Communicating results

Communicating results

• What is the goal?

- Facilitate the user's analysis
- Communicate a specific message

• Who is the audience?

- Clinicians, public health officials, or the general public
- Keep in mind data and visualization literacy

Communicating results: specific message

From Emma Boley and Emilia Connolly February 24, 2021 Presentation

Best practices

Lots of things to consider

- Show the data
- Ease comparisons across groups
 - Add color
 - Put on same scale
 - Align figures vertically / horizontally
- Appropriate axis limits
 - Do not always *need* to include zero
- Descriptive labels for plot features (axis, plot title, legend)
- I really like this source (specific to ggplot in R): <u>https://rafalab.github.io/dsbook/data-visualization-principles.html</u>

Show the data: "let the data speak!"

Show the data: be transparent

Show the data: be transparent

Choice of colors (or not!)

Consideration #1: Individuals with color vision deficiency

You can use a "vision simulator" to see what your plots would look like to people with color vision deficiency:

https://asada.website/webCVS/

Consideration #2: Color palettes are available online and can spruce up a figure!

Consideration #3: If you are publishing, color figures cost more.

Choice of colors (or not!)

	brewe	er_spectra		

I will <u>not</u> be using this color palette anymore!

Using the https://asada.website/webCVS/

Choice of color scales

Is there a "neutral" value with one extreme? Is there a "neutral" value with two extremes?

Best for continuous variable	sequential color ramp (smooth)	diverging color ramp (smooth)			
Best for categorical					
variable (but could be used for continuous)	sequential color ramp (stepped)	diverging color ramp	(stepped)		
		Define	Define		
		min	max		

https://www.storytellingwithdata.com/blog/2020/5/6/picking-the-right-colors

Choice of color scales

https://www.dailyposter.com/p/georgias-misleading-covid-map

Appropriate axis limits

Outlier example from last week

Outlier removed

Appropriate axis limits

https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf

Activity: what plot do you prefer?

GOAL: Determine which are the best and worst states in terms of measles rates.

https://rafalab.github.io/dsbook/data-visualizationprinciples.html

18

Activity: what plot do you prefer?

GOAL: Display which age groups have been the most impacted by COVID-19 during the entire pandemic.

Activity: what plot do you prefer?

GOAL: Show how the rates of TB treatment outcomes differ by age.

Syndromic surveillance

Reasons for data visualizations

• Exploring the data

- Distribution of data / transparency
- Identify patterns, outliers, missing data

Analyzing the data

- Identifying deviations
- Goodness of fit
- Checking model assumption
- Communicating results

Syndromic surveillance: communicating

- The goal is to <u>detect</u> areas that have a potential uptick in cases
- Want to communicate:
 - Is the deviation larger than expected?
 - Magnitude of the deviation
 - Is it important to show raw data and/or model fit?
- Potential issues:
 - Need to contextualize the magnitude of deviation
 - Many areas or indicators to show (*how to best compare?*)

Time series plot – *all information*

Time series plot – *evaluation only*

Time series plot – *deviations*

Multiple plots – *deviations*

deviation = observed - expected

Multiple plots – *standardized*

$$deviation = \frac{(observed - expected)}{population} \times 100,000$$

28

Tiled heat map

 $deviation = \frac{(observed - expected)}{expected}$

Map – static

 $deviation = \frac{(observed - expected)}{expected}$

Map – interactive

Created by Nichole

 $deviation = \frac{(observed - expected)}{expected}$

Software for data viz

- Figures can be generated in most software we use for data analysis (R, Python, Stata, SPSS, SAS, and Excel)
- R is free **<u>and</u>** has the *best* data viz options via the ggplot2 package
- Interactive options in R include:
 - *Rmarkdown* to create HTML files (plotly package for interactive plots)
 - *Shiny* app
 - leaflet package for mapping (Nichole is an expert)
- When creating dashboards, *Shiny* requires strong knowledge of R. Another more user-friendly option is Tableau (\$\$).

Lab: Tying it all together!

- Lab will be a large activity to work through all skills from course
- Syndromic surveillance: Choose from three options
- Ample time to fine tune data visualizations & ask specific questions

Thank you!

