Lecture 2 Exercises

Isabel Fulcher
8/3/2018

Part 1: Matrix / Vector Operations

Before starting generate the following in R:

```
set.seed(11)
b <- sample(10,4,replace=TRUE)
A <- matrix(sample(10,16,replace=TRUE),4,4)
```

Now perform the following exercises to get familiar with matrix operations:

1. What is the dimension of \mathbf{A} ?
2. Find the transpose of \mathbf{b}
3. Are vectors in R column or row vectors by default?
4. Calculate the following in R: $\mathbf{A}^{T} \mathbf{A}$
5. Repeat the previous exercise with a built-in R function
6. Solve $\mathbf{b}=\mathbf{A x}$ for \mathbf{x}
7. Repeat the previous with a built-in R function.
8. Create a $4 x 4$ matrix with diagonal elements equal to 5 and off-diagonals equal to 0 .

Part II: Flow control

For Loops

1. Using a for loop, generate a vector containing the natural numbers up to 10 and add 2 to each element. How can you do this without a loop?
2. Load in the iris dataset using the R code provided below. Use a for loop to compute the standard deviation of the first four columns measuring sepal length, sepal width, pedal length, and pedal width respectively.
```
# load dataset
data(iris)
# view the first ten observations
head(iris)
```

\#\#	Sepal.Length	Sepal.Width	Petal.Length Petal. Width	Species	
\#\# 1	5.1	3.5	1.4	0.2	setosa
\#\# 2	4.9	3.0	1.4	0.2	setosa
\#\# 3	4.7	3.2	1.3	0.2	setosa
\#\# 4	4.6	3.1	1.5	0.2	setosa
\#\# 5	5.0	3.6	1.4	0.2	setosa
\#\# 6	5.4	3.9	1.7	0.4	setosa

Apply functions

1. For question 2 in the "For Loops" section, use apply to perform the same task.
2. Report the 20 th and 80 th percentiles for each variable in the Iris dataset. Hint: use the quantile function.
3. Compute the variance-covariance matrix for the four variables in the Iris dataset. Confirm your answer by using the cov function. Hint: the covariance matrix is given by $(n-1)^{-1} \mathbf{X}^{* T} \mathbf{X}^{*}$ where \mathbf{X}^{*} contains mean centered values for each of the four variables.
4. In a given library of RNA-seq reads, there are duplicate observations due to PCR amplification. However, you know that there are truly $N=50,000$ unique reads. Your collaborator wants to know how many reads she should sequence $(K \geq N)$ to get a good saturation of her library (i.e. capture as many unique reads as possible). Assume that sampling from the N unique reads occurs with replacement and equal probability. What is the expected number of unique reads for the values of K between 50,000 and 200,000 (use increments of 10,000)?
```
set.seed(345)
```


While Loops and conditional statements

1. Roll a fair six sided die; if the roll is a prime number, print "prime"; if the roll is a composite number, print "composite"; otherwise print " 1 "
```
#Hint: the %in% function shows if an element is in a vector
2 %in% c(1,2,3)
## [1] TRUE
```

2. The initial value of the number is 0 . If the number is less than 10 , then add a random number between 0 and 1 to it and print the resulting sum. Continue until the total sum is greater than 10 .
```
#Hint: the runif function returns a random number between 0 and 1
runif(n=1,min=0,max=1)
## [1] 0.2162537
```

3. The Newton-Raphson method (or Newton Method) is a simple iterative technique for finding the zero r of a real-valued function $f(x)$. First, we provide some initial guess x_{0} for r. The goal is then to obtain a better estimate x_{n} of r in n iterations. Using the Newton-Raphson method, find the $5^{\text {th }}$ root of 7 .

- The algorithm can be summarized as follows. First, we can rewrite $r=x_{0}+h$ for some h which measures how far the estimate initial guess x_{0} is from the true zero r. Assuming h is small, we can use linear approximation to conclude that

$$
0=f(r)=f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)
$$

It then follows that

$$
h \approx-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)
$$

and therefore a better estimate of r is given by

$$
x_{1}=x_{0}+h \approx x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)
$$

Continuing in this way, if x_{n} is the current estimate of r then x_{n+1} is given by

$$
x_{n+1} \approx x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
$$

- Hint: You may want to specify a small pre-specified tolerance level in place of the approximations. In some cases, it may also be useful to specify a maximum number of iterations.

