
Biostatistics Preparatory Course:
Methods and Computing

Lecture 9

Maximum Likelihood & the Bootstrap
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Overview: Maximum Likelihood Estimation

Consider estimating a parameter θ given a sample of data, {X1, . . . ,Xn}

What is maximum likelihood estimation?
A statistical method that estimates θ as the value that maximizes the
likelihood of obtaining the observed data
That is, the maximum likelihood estimator (MLE) provides the
greatest amount of agreement between the selected model and the
data
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Overview: Maximum Likelihood Estimation

What is the likelihood function?
In math - L(θ) = f (x1, . . . , xn|θ) where f (·) denotes the joint density
of the data
In words - the function that dictates the probability (relative
frequency) of observing the data as a function of θ

The definition of the MLE is:

θ̂MLE = argmaxθ L(θ)
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Simple Setting

We will focus on the setting of iid observations, that is,

{X1, . . . ,Xn} is a simple random sample

The likelihood then simplifies to

L(θ) =
n∏

i=1

f (xi |θ)

In practice, we typically maximize the log of the likelihood:

`(θ) = log{L(θ)} =
n∑

i=1

log{f (xi |θ)}

since taking the derivative of a sum is typically easier than a product
and the likelihood can be very small for large n (a computational issue)

Methods and Computing Harvard University Department of Biostatistics 4 / 16



Why is maximum likelihood estimation so popular?

Provides a unified framework for estimation
Under mild regularity conditions, MLEs are:

1 consistent → converge to the true value in probability as n→∞, i.e.

lim
n→∞

P(|θ̂ − θ| ≤ ε) = 1 ∀ε > 0

2 asymptotically normal →
√

n(θ̂ − θ) ∼ N(0, σ2) for large n
3 asymptotically efficient → achieve the lowest variance for large n
4 invariant → if θ̂ is the MLE for θ then g(θ̂) is the MLE for g(θ)

Many algorithms exist for maximum likelihood estimation
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Steps to find the MLE

1 Write out the likelihood

L(θ) = f (x1, . . . , xn|θ)

2 Simplify the log likelihood

`(θ) = log{L(θ)}

3 Take the derivative of `(θ) with respect to the parameter of interest, θ
4 Set = 0
5 Solve for θ (this is your θ̂MLE )

6 Check that θ̂MLE is a maximum
(
∂2

∂θ2
`(θ) < 0

)
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MLE Exercises

1 Suppose we have an iid sample {X1, . . . ,X100} with Xi ∼ Ber(p).
Find the MLE for p. Recall that the density for a Bernoulli random
variable can be written as:

pXi (1− p)1−Xi

2 Suppose we have an iid sample {X1, . . . ,Xn} with Xi ∼ N(µ, σ2) Find
the MLE for µ. Recall that the density for a normal random variable
can be written as:

1√
2πσ

exp(
1

2σ2 (Xi − µ)2)
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MLE Exercises in R

We are going to use R to derive the MLE in more complex cases.

In the previous two examples, we found a closed-form solution (MLE)
for our parameters
Sometimes, there is no closed-form solution, so we need to use
optimization methods to estimate our parameter of interest
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The optim function

General-purpose optimization that implements various methods
It will find the values of some parameters that minimizes some
function
You need to specify...

The parameters that you want to estimate
The function (in our case, the negative log-likelihood; why negative?)
The method (I typically use "BFGS")
Starting values for your parameters (use random numbers)
Other values that you need to pass into your function

Methods and Computing Harvard University Department of Biostatistics 9 / 16



MLE Exercises
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The Bootstrap

What is the bootstrap?
A widely applicable, computer intensive resampling method used to
compute standard errors, confidence intervals, and significance tests

Why is it important?
The exact sampling distribution of an estimator can be difficult to
obtain
Asymptotic expansions are sometimes easier but expressions for
standard errors based on large sample theory may not perform well in
finite samples
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Motivating Analogy

The bootstrap samples should relate to the original sample just as the
original sample relates to the population
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Overview: The Bootstrap Principle

Without additional information, the sample contains all we know about the
underlying distribution so resampling the sample is the best approximation

to sampling from the true distribution
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The Bootstrap Principle

Suppose X = {X1, . . . ,Xn} is a sample used to estimate some parameter
θ = T (P) of the underlying distribution P . To make inference on θ, we are
interested in the properties of our estimator θ̂ = S(X ) for θ.

If we knew P , we could obtain {X b|b = 1, . . .B} from P and use
Monte-Carlo to estimate the sampling distribution of θ̂ (sound
familiar?)
We don’t so we do the next best thing and resample from original
sample, i.e. the empirical distribution, P̂

We expect the empirical distribution to estimate the underlying
distribution well by the Glivenko-Cantelli Theorem
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Bootstrap procedure

Goal: Find the standard error and confidence intervals for some θ̂ = S(D)
where D encodes our observed data.

Select B independent bootstrap resamples D(b), each consisting of N
data values drawn with replacement from the data.
Compute the estimates from each bootstrap resample

θ̂∗(b) = S(D∗(b)) b = 1, ...,B

Estimate the standard error se(θ̂) by the sample standard deviation of
the B replications of θ̂∗(b)
Estimate the confidence interval by finding the 100(1− α) percentile
bootstrap CI,

(θ̂L, θ̂U) = (θ̂∗
α/2

, θ̂∗
1−α/2

)
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Boostrap exercise
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