Lecture 3 Solutions

Isabel Fulcher 8/7/2018

Normal distribution exercises

1. Generate 10 draws from a normal random variable with mean 5 and variance 4. What is the sample mean of these variables? What is the true mean?

set.seed(12)
x <- rnorm(10,5,2)
mean(x)</pre>

[1] 4.065572

2. How would you expect the previous answer to change if we increased the number of draws to 10,000? Check your intuition.

```
set.seed(12)
x <- rnorm(10000,5,2)
mean(x)</pre>
```

[1] 4.997451

3. The probability density function (pdf) for a normal random variable X with mean μ and variance σ^2 is as follows,

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} exp(\frac{-1}{2\sigma^2}(x-\mu)^2)$$

What is the value of $f_X(0)$ when $\mu = 0$ and $\sigma^2 = 2$? Calculate using the above expression and built-in R function.

#evaluate expression
(1/sqrt(2*pi*2))

[1] 0.2820948
#built-in R function
dnorm(0,0,sqrt(2))

[1] 0.2820948

4. If $X \sim N(5, 4)$, what is P(X < 2)? What is $P(X \le 2)$? What is P(X > 2)?

 $# P(X < 2) = P(X \le 2)$ pnorm(2,5,4)

```
## [1] 0.2266274
# P(X > 2)
1-pnorm(2,5,4)
```

```
## [1] 0.7733726
pnorm(2,5,4,lower.tail=FALSE)
```

Poisson distribution exercises

1. Generate a random sample of size 100,000 from a Poisson distribution with rate parameter 5

```
set.seed(80417)
xsamp <- rpois(100000,5)</pre>
```

2. Compute the sample mean and variance. What do you notice?

mean(xsamp)

[1] 4.99062

var(xsamp)

[1] 5.014122

- 3. Compute the empirical estimates of P(X = 0), P(X = 1), and P(X = 2) for $X \sim Pois(5)$ from your sample.
- 4. Compare the estimates to the true value of the probability mass function (pmf) at x = 0, 1, 2. Use the pmf and the built-in R function. Note the pmf is given by:

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 where $x \in 0, 1, 2, ...$ and $\lambda > 0$

5. Compute an estimate of P(0 < X < 3) from the sample and compare to true value.

```
#estimate
mean(xsamp > 0 & xsamp < 3)</pre>
```

[1] 0.11977

```
#true value
dpois(1,5)+dpois(2,5) #P(X=1) + P(X=2)
```

[1] 0.1179141

ppois(2,5)-ppois(0,5) #P(X <= 2) - P(X = 0)</pre>

[1] 0.1179141

6. Find the smallest k such that 0.30 < P(X < k) for $X \sim Pois(5)$ using a while loop. Then, do this using a built-in R function.

```
# Thank you, Beau!
k = 0
pr = 0
while (pr < .3){
    pr = pr + ppois(k,5)
    k = k + 1
}
k</pre>
```

[1] 4

Group exercises

To display your results, create a table in Rmarkdown using the kable() function. Try to make it as clean as possible (i.e. column headers, title, digits, etc.).

Fun note: you will prove these results formally in the probability course!

Group 1

Generate 100,000 samples from a geometric distribution with p = 0.3. Estimate $P(X \ge s + t | X \ge t)$ and $P(X \ge s)$ for s = 4 and t = 1, 2, 3, 4, 5, 6. Compare to the true values. What do you notice? Google 'memoryless property distribution' and take a look at the wiki page on memorylessness. What does this suggest about the geometric distribution?

t	$P(X >= 4 + t \mid X >= t)$	P(X >= 4)
1	0.24	0.24
2	0.242	0.24
3	0.241	0.24
4	0.242	0.24
5	0.243	0.24
6	0.24	0.24

Table 1: Exercise 1 results

Group 2

Generate 10,000 samples from a Bin(3,0.5) and another 10,000 samples from Bin(5,0.5). Compute the empirical cdf of the sum of the two samples and compare to the distribution function of a $Z \sim Bin(8,0.5)$ random variable. What does this suggest about the distribution of X + Y where $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$?

```
# Two sample distribution
x <- rbinom(10000,3,.5)
y <- rbinom(10000,5,.5)
xysum <- x+y</pre>
```

```
col.names = c("k","Empirical Pr(X+Y <= k)","Pr(Z <= k)"),
caption="Exercise 2 results")
```

k	Empirical $\Pr(X+Y \le k)$	$\Pr(Z <= k)$
0	0.003	0.004
1	0.034	0.035
2	0.141	0.145
3	0.356	0.363
4	0.634	0.637
5	0.861	0.855
6	0.967	0.965
7	0.996	0.996
8	1	1

Table 2: Exercise 2 results