Lecture 3 Solutions

Isabel Fulcher
8/7/2018

Normal distribution exercises

1. Generate 10 draws from a normal random variable with mean 5 and variance 4 . What is the sample mean of these variables? What is the true mean?
```
set.seed(12)
x <- rnorm(10,5,2)
mean(x)
## [1] 4.065572
```

2. How would you expect the previous answer to change if we increased the number of draws to 10,000 ? Check your intuition.
```
set.seed(12)
x <- rnorm(10000,5,2)
mean(x)
## [1] 4.997451
```

3. The probability density function (pdf) for a normal random variable X with mean μ and variance σ^{2} is as follows,

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{-1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

What is the value of $f_{X}(0)$ when $\mu=0$ and $\sigma^{2}=2$? Calculate using the above expression and built-in R function.

```
#evaluate expression
(1/sqrt(2*pi*2))
## [1] 0.2820948
#built-in R function
dnorm(0,0,sqrt(2))
## [1] 0.2820948
    4. If }X~N(5,4), what is P(X<2)?.What is P(X\leq2)?.What is P(X>2)
# P(X<2) = P(X<= 2)
pnorm(2,5,4)
## [1] 0.2266274
# P(X > 2)
1-pnorm(2,5,4)
## [1] 0.7733726
pnorm(2,5,4,lower.tail=FALSE)
```


Poisson distribution exercises

1. Generate a random sample of size 100,000 from a Poisson distribution with rate parameter 5
```
set.seed(80417)
xsamp <- rpois(100000,5)
```

2. Compute the sample mean and variance. What do you notice?
```
mean(xsamp)
## [1] 4.99062
var(xsamp)
```

\#\# [1] 5.014122
3. Compute the empirical estimates of $P(X=0), P(X=1)$, and $P(X=2)$ for $X \sim \operatorname{Pois}(5)$ from your sample.
4. Compare the estimates to the true value of the probability mass function (pmf) at $x=0,1,2$. Use the pmf and the built-in R function. Note the pmf is given by:

$$
P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \text { where } x \in 0,1,2, \ldots \text { and } \lambda>0
$$

5. Compute an estimate of $P(0<X<3)$ from the sample and compare to true value.
```
#estimate
mean(xsamp > 0 & xsamp < 3)
## [1] 0.11977
#true value
dpois(1,5)+dpois (2,5) #P(X=1) + P(X=2)
## [1] 0.1179141
ppois(2,5)-ppois(0,5) #P(X<= 2) - P(X = 0)
## [1] 0.1179141
```

6. Find the smallest k such that $0.30<P(X<k)$ for $X \sim \operatorname{Pois(5)}$ using a while loop. Then, do this using a built-in R function.
```
# Thank you, Beau!
k = 0
pr = 0
while (pr < .3){
    pr = pr + ppois(k,5)
    k = k + 1
}
k
## [1] 4
```


Group exercises

To display your results, create a table in Rmarkdown using the kable() function. Try to make it as clean as possible (i.e. column headers, title, digits, etc.).

Fun note: you will prove these results formally in the probability course!

Group 1

Generate 100,000 samples from a geometric distribution with $p=0.3$. Estimate $P(X \geq s+t \mid X \geq t)$ and $P(X \geq s)$ for $s=4$ and $t=1,2,3,4,5,6$. Compare to the true values. What do you notice? Google 'memoryless property distribution' and take a look at the wiki page on memorylessness. What does this suggest about the geometric distribution?

```
xsamp <- rgeom(100000,.3)
T <- 1:6
pr_func <- function(x,s,t) {
    pr1 <- round(mean(x[x >= t] >= s + t),3)
    pr2 <- round(mean(x >= s),3)
    return(data.frame("t" = t, "cond" = pr1, "marg" = pr2))
}
results <- sapply(T,pr_func,x=xsamp,s=4)
# Create a table
kable(t(results), align=rep('c',times=3),
    col.names = c("t","P(X >= 4+t | X >= t)","P(X >= 4)"),
    caption="Exercise 1 results")
```

Table 1: Exercise 1 results

t	$\mathrm{P}(\mathrm{X}>=4+\mathrm{t} \mid \mathrm{X}>=\mathrm{t})$	$\mathrm{P}(\mathrm{X}>=4)$
1	0.24	0.24
2	0.242	0.24
3	0.241	0.24
4	0.242	0.24
5	0.243	0.24
6	0.24	0.24

Group 2

Generate 10,000 samples from a $\operatorname{Bin}(3,0.5)$ and another 10,000 samples from $\operatorname{Bin}(5,0.5)$. Compute the empirical cdf of the sum of the two samples and compare to the distribution function of a $Z \sim B i n(8,0.5)$ random variable. What does this suggest about the distribution of $X+Y$ where $X \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$?
\# Two sample distribution
x <- rbinom(10000,3,.5)
y <- rbinom (10000,5,.5)
xysum <- x+y

```
emp.cdf <- function(samp,val) {
    p <- round(mean(samp <= val),3)
    return(data.frame("k" = val, "prob" = p))
}
values <- 0:8
results.sum <- sapply(values,emp.cdf,samp=xysum)
# Empirical CDF Bin(8,0.5)
results.z <- round(sapply(values,pbinom,size=8,prob=0.5),3)
# Create table
results <- cbind(t(results.sum),results.z)
kable(results,align=rep('c',times=3),
    col.names = c("k","Empirical Pr(X+Y <= k)","Pr(Z <= k)"),
    caption="Exercise 2 results")
```

Table 2: Exercise 2 results

k	Empirical $\operatorname{Pr}(\mathrm{X}+\mathrm{Y}<=\mathrm{k})$	$\operatorname{Pr}(\mathrm{Z}<=\mathrm{k})$
0	0.003	0.004
1	0.034	0.035
2	0.141	0.145
3	0.356	0.363
4	0.634	0.637
5	0.861	0.855
6	0.967	0.965
7	0.996	0.996
8	1	1

