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Install packages

library(tidyverse) #ggplot2, dplyr, etc.
library(reshape2) #need this for melt()
library(MASS) #contains dataset

Exercise I

Load the birthwt data. This data contains 189 observations, 9 predictors, and an outcome, birthweight,
available both as a continuous measure and a binary indicator for low birth weight.

## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
## 91 0 21 124 3 0 0 0 0 0 2622

1. Plot a scatterplot of birthweight (bwt) and mother’s weight (lwt).
p <- ggplot(birthwt,aes(x=lwt,y=bwt)) + geom_point() +

labs(x="Mother's weight (pounds)",y="Birthweight (grams)")

2. Use OLS to fit the regression of birthweight on mother’s weight.
# Fit the regression and view results
fit <- lm(bwt ~ lwt, data=birthwt)
#This returns a summary of the results
summary(fit)

3. Extract the following: estimated coefficients, standard errors, variance-covariance matrix, and confidence
intervals.

# Estimated coefficients
coefficients(fit)

# Standard errors for the above
summary(fit)$coeff[,2]

# Variance-covariance matrix
vcov(fit)

# Confidence intervals
# use this funtion (do not recommend using for glm())
confint(fit)

4. Plot the regression line and interpret the intercept and slope
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p <- ggplot(birthwt,aes(x=lwt,y=bwt)) +
geom_point(color="grey") + #plots gray points
stat_smooth(method="lm",col="red",se=FALSE) #plot regression line

5. Does the interpretation of the intercept make sense? How might we change this?
birthwt %>% mutate(lwt_star = lwt - mean(lwt)) -> birthwt

fit.new <- lm(bwt ~ lwt_star,data=birthwt)
summary(fit.new)

6. Now, we want to fit a model that includes race, mother’s age, and smoking status in the model. Race
takes on value 1 for white, 2 for black, and 3 for other. Mother’s age is continuous. Smoking status is
binary. Write out the regression function we may be interested in.

7. Use OLS to calculate the coefficient estimates in this model.
fit2 <- lm(bwt ~ as.factor(race) + age + smoke, data=birthwt)
summary(fit2)

##
## Call:
## lm(formula = bwt ~ as.factor(race) + age + smoke, data = birthwt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2322.6 -447.3 28.4 502.2 1612.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3281.673 260.664 12.590 < 2e-16 ***
## as.factor(race)2 -444.069 156.194 -2.843 0.004973 **
## as.factor(race)3 -447.858 119.017 -3.763 0.000226 ***
## age 2.134 9.771 0.218 0.827326
## smoke -426.093 109.988 -3.874 0.000149 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 690 on 184 degrees of freedom
## Multiple R-squared: 0.1236, Adjusted R-squared: 0.1046
## F-statistic: 6.49 on 4 and 184 DF, p-value: 6.592e-05

8. Interpret all the coefficient estimates.

• The estimated mean birthweight among infants born to mothers who are non-smokers are zero years
old (weird!), and white is 3281.7 grams.

• The estimated mean birthweight among infants with black mothers is 444.07 grams lower than the
mean birthweight among infants with white mothers, holding all other variables constant

• The estimated mean birthweight among infants with mothers in the “other” race category is 444.86
grams lower than the mean birthweight among infants with white mothers, holding all other variables
constant

• The estimated change in mean birthweight corresponding to a one year change in mother’s age is 2.134
grams, holding all other variables constant

• The estimated mean birthweight among infants with mothers that smoke is 426.09 grams lower than the
mean birthweight among infants with mothers that do not smoke, holding all other variables constant.

9. Print the results in Rmarkdown using kable().
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table <- data.frame(summary(fit2)$coef)
row.names(table) <- c("Intercept","White","Black","Mother's age", "Smoker")

knitr::kable(table,digits=3,align=rep('c', 2),
col.names = c("estimate","standard error","test statistic","p-value"))

estimate standard error test statistic p-value
Intercept 3281.673 260.664 12.590 0.000
White -444.069 156.194 -2.843 0.005
Black -447.858 119.017 -3.763 0.000
Mother’s age 2.134 9.771 0.218 0.827
Smoker -426.093 109.988 -3.874 0.000

Group Exercises

From the course website, load the North Carolina infant mortality dataset. This contains information on all
225,152 births in North Carolina from 2003-2004.
load("infants.dat")

Group 1

The goal of this exercise is to emulate “sampling” from this North Carolina birth population and see how
variability in our estimates will change with sample size.

1. You are interested in how maternal age affects birthweight. Write the form of the linear regression
model.

E[Y |X] = β0 + β1X

2. Take a sample of size n = 100 from this population, fit the linear regression from 1 and extract the
coefficient estimate for gestational age, i.e. β̂1.

dat <- infants[sample(nrow(infants),100),]
fit <- lm(weight ~ weeks,data=dat)
beta <- coefficients(fit)[2]

3. Repeat part 2 b = 500 times and plot the estimated coefficients in a histogram.
# Create a function to apply over
fit_reg <- function(n,b){

dat <- infants[sample(nrow(infants),n),]
fit <- lm(weight ~ weeks,data=dat)
beta <- coefficients(fit)[2]
return(beta)

}

# Apply over function
out <- sapply(1:500,fit_reg,n=100)

# Plot histogram
out.df <- data.frame(out) #make dataframe for ggplot
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colnames(out.df) <- "est" #rename columns
ggplot(out.df,aes(x=est)) + geom_histogram()

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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4. For the following sample sizes, $N={25, 50, 100, 500, 1000, 5000, 10000}, repeat questions 2-3. Save in
a dataframe so you can plot your results.

B <- 500
N = c(25,50,100,500,1000,5000,10000)
results <- sapply(N, function(n) {sapply(1:B,fit_reg,n=n)} )
colnames(results) <- paste0("n=",N)
results.df <- melt(results)

5. Find a creative way to plot your results, and include some reference to the population β1. Interpret
these results.

#population beta
beta.truth <- coefficients(lm(weight ~ weeks, data=infants))[2]

ggplot(results.df,aes(x=Var2,y=value)) + geom_boxplot() +
geom_hline(yintercept=beta.truth,col="red")
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6. If you had instead extracted the standard error estimate for maternal age, what would you expect to
happen? Confirm your intuition by repeating this procedure again for the standard error of the beta
coefficient estimate at various sample sizes.

# create a function
fit_sd <- function(n,b){

dat <- infants[sample(nrow(infants),n),]
fit <- lm(weight ~ weeks,data=dat)
se <- summary(fit)$coefficients[1,2]
return(se)

}

B <- 500
N = c(25,50,100,500,1000,5000,10000)
results <- sapply(N, function(n) {sapply(1:B,fit_sd,n=n)} )
colnames(results) <- paste0("n=",N)
results.df <- melt(results)

ggplot(results.df,aes(x=Var2,y=value)) + geom_boxplot()
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Group 2

The purpose of this exercise is to practice working with interpreting regression output with interaction terms
in R.

1. Take a random sample of size 10,000 from the NC dataset to work with for this problem. Make sure
everyone in your group uses the same seed, so that you draw the same sample.

set.seed(42)
dat <- infants[sample(nrow(infants),5000),]

2. For this problem, you will be working with the following model where Y is birth weight, X1 is weight
gain during pregnancy and X2 is smoking. What does β3 represent? Why might this be of interest?

E[Y |X1, X2] = β0 + β1X1 + β2X2 + β3X1X2

3. Create a scatter plot of maternal weight gain and birth weight. Color observations according to smoking
status.

ggplot(dat,aes(x=gained,y=weight,color=as.factor(smoker))) + geom_point()
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4. Use the expression β̂ given in the slides to find the estimates of the coefficients. Note: for this question,
you will need to create the “design” matrix, X.

dat %>% dplyr::select(gained,smoker) %>% mutate(beta0 = 1, int = gained*smoker) %>% as.matrix() -> X
dat %>% dplyr::select(weight) %>% as.matrix() -> Y

beta.hat <- solve(crossprod(X))%*%t(X)%*%Y
beta.hat

## weight
## gained 0.0082429763
## smoker -0.2581443107
## beta0 3.0547583271
## int 0.0007077899

5. Fit this regression using the lm() function. How does this compare with the results from part 4?
fit <- lm(weight ~ gained + smoker + I(gained*smoker),data=dat)
summary(fit)

##
## Call:
## lm(formula = weight ~ gained + smoker + I(gained * smoker), data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.94813 -0.29448 0.04552 0.37781 2.42495
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0547583 0.0225702 135.345 < 2e-16 ***
## gained 0.0082430 0.0006864 12.008 < 2e-16 ***
## smoker -0.2581443 0.0561358 -4.599 4.36e-06 ***
## I(gained * smoker) 0.0007078 0.0016182 0.437 0.662
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6088 on 4996 degrees of freedom
## Multiple R-squared: 0.04964, Adjusted R-squared: 0.04907
## F-statistic: 86.99 on 3 and 4996 DF, p-value: < 2.2e-16

6. Interpret the coefficients for weight gain and smoker. Be as precise as possible.

• The estimated mean birthweight corresponding to a one-pound change in weight gain is 0.008 kg
among non-smoking mothers.

• The estimated mean birthweight is 0.258 kg lower than among non-smokers among women who did not gain any weight.

7. Plot the regression line for smokers and non-smokers on plot 2. Hint: use stat_function() in gpplot and
define your own function.

beta_est_smoke <- coefficients(fit)
beta_est_nosmoke <- coefficients(fit)[c(1,2)]

ggplot(dat,aes(x=gained,y=weight)) + geom_point(color="grey") +
stat_function(fun = function(x) {beta_est_nosmoke[1] + beta_est_nosmoke[2]*x},color="red") +
stat_function(fun = function(x) {beta_est_smoke[1] + beta_est_smoke[2]*x +

beta_est_smoke[3] + beta_est_smoke[4]*x},color="blue")
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8. Do you see large differences in the slopes of these lines? Which p-value in the regression output formally
tests this? Does this align with your expectations?

There is almost no difference in the slope of these lines. The p-value corresponding to the hypothesis test of
H0 : β3 = 0 is 0.662, meaning there is a 0.662 chance that we would observe this estimated value given that
the null is true.
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